柯西不等式高中公式(abc不等式公式)

abc的均值不等式公式:

a^2+b^2 ≥ 2ab

√(ab)≤(a+b)/2 ≤(a^2+b^2)/2

a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac

a+b+c≥3×三次根号abc

证明

关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:(注:在此证明的,是对n维形式的均值不等式的证明方法)用数学归纳法证明,需要一

个辅助结论。

柯西不等式高中公式(abc不等式公式)

若都是实数,则,当且仅当时,时等号成立,柯西不等式公式:√(a^2+b^2)≥(c^2+d^2)。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

一般地,用纯粹的大于号“>”、小于号“,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,…,z)≤G(x,y,…,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题。

四个不等式的大小关系:Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。平方平均数≥算数平均数≥几何平均数≥调和平均数,即√[(a²+b²)/2]≥(a+b)/2≥√(ab)≥2/(1/a+1/b)。

关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。

引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。

平均数表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。

柯西不等式可以简单地记做:平方和的积 ≥ 积的和的平方.它是对两列数不等式.取等号的条件是两列数对应成比例.

如:两列数

0,1

2,3

(0^2 + 1^2) * (2^2 + 3^2) = 26 ≥ (0*2 + 1*3)^2 = 9.

形式比较简单的证明方法就是构造一个辅助函数,这个辅助函数是二次函数,于是用二次函数取值条件就得到Cauchy不等式.

还有一种形式比较麻烦的,但确实很容易想到的证法,就是完全把Cauchy不等式右边-左边的式子展开,化成一组平方和的形式.

这里只给出前一种证法.

Cauchy不等式的形式化写法就是:记两列数分别是ai,bi,则有

(∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2.

我们令

f(x) = ∑(ai + x * bi)^2

= (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)

则我们知道恒有

f(x) ≥ 0.

用二次函数无实根或只有一个实根的条件,就有

Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.

于是移项得到结论

柯西不等式公式四个:(a²+b²)(c²+d²)≥(ac+bd)²;√(a²+b²)+√(c²+d²)≥√[(a-c)²+(b-d)²];|α||β|≥|α·β|;(∑ai²)(∑bi²)≥(∑ai·bi)²。

免责声明:本文章由会员“robots”发布如果文章侵权,请联系我们处理,本站仅提供信息存储空间服务如因作品内容、版权和其他问题请于本站联系

robots
免责声明:本文章由会员“robots”发布,如果文章侵权,请联系我们处理,本站仅提供信息存储空间服务;如因作品内容、版权和其他问题请于本站联系